Scientific Program

Conference Series Ltd invites all the participants across the globe to attend 5th International Conference on Theoretical and Applied Physics Vienna, Austria.

Day 2 :

Keynote Forum

Qiuhe Peng

Nanjing University, China

Keynote: Explosion of collapsed supernova and hot big bang of the universe driven by magnetic monopoles

Time : 09:35-10:10

Biography:

Qiuhe Peng is mainly engaged in nuclear astrophysics, particle astrophysics and Galactic Astronomy research. In the field of Nuclear Astrophysics, his research project involved a neutron star (pulsar), the supernova explosion mechanism and the thermonuclear reaction inside the star, the synthesis of heavy elements and interstellar radioactive element such as the origin of celestial 26Al. In addition, through his lectures, he establishes Nuclear Astrophysics research in China. He was invited by Peking University, by Tsinghua University (both in Beijing and in Taiwan) and by nuclear physics institutes in Beijing, Shanghai, Lanzhou to give lectures on Nuclear Astrophysics for many times. He has participated in the international academic conferences over 40 times and he visited more than 20 countries. In 1994, he visited eight institutes in USA to give lectures. He is the first Chinese Astrophysicist to visit NASA and to give a lecture on the topic, “Nuclear Synthesis of Interstellar 26Al”. In 2005, he visited USA twice and gave lectures in eight universities again. Inviting six astronomers of USA to give series lectures, he has hosted four consecutive terms summer school on gravitational wave astronomy. After the four summer school obvious effect, at least 20 young scholars in China in the field of gravitational wave astronomy specialized learning and research. 220 research papers by him have been published.

Abstract:

An anomaly strong radial magnetic field near the Galactic Center (GC) is detected[1]. The lower limit of the radial magnetic field at r=0.12 pc from the GC is B≥8mG.
 
It is possible scientific significances are following:
 
• The black hole model at the GC is incorrect. The reason is that radiations observed from the region neighbor of the GC are hardly emitted by the gas of accretion disk due to it being prevented from approaching to the GC by the abnormally strong radial magnetic field[2].
• This is an anticipated signals for existence of magnetic monopoles (MM)[3].
• The lower limit of the detected radial magnetic field is quantitatively in agreement with the prediction of our paper “An AGN model with MM”[4].
• Magnetic monopoles may play a key role in some very important astrophysical problems using the Robakov-Callen effect that nucleons may decay catalyzed by MM.
• Taking the RC effect as an energy source, we have proposed a unified model for various supernova explosion[5], including to solve the question of the energy source both in the Earth core and in the white dwarfs.
• We may explain the physical reason of the Hot Big Bang

Biography:

Takashi Matsuoka is a Professor at the Institute for Materials Research, Tohoku University. He has published more than 100 papers in journals and more than 50 patents including U.S. and EPC patents. In 1980s, he developed the laser diode used for the present optical communications systems. He has also developed nitride semiconductors. He proposed the material concept for blue LEDs and showed how to grow InGaN as an emitting layer. He was the Editor of Applied Physics Express for five years. He is a member of IEEE, MRS, ACerS, SPIE, and several other societies in Japan.

Abstract:

Since the first synthesization of gallium nitride nanorods (GaN) in 1932, high quality GaN could not be obtained for a long term because the equilibrium vapor pressure of nitrogen is a several orders of magnitude higher than the equilibrium pressure of As in gallium arsenide (GaAs) at the growth temperature. For the lack of a GaN substrate, a GaN thin film was epitaxially grown on a sapphire substrate in 1969. A MIS-type GaN LED was fabricated and the first blue emission was observed in 1971. Accidentally, the high quality GaN film with a smooth surface was successively grown through a low-temperature grown AlN buffer layer by the metalorganic vapor phase epitaxy (MOVPE) for the first time in 1986. To construct a double-heterostructure (DH structure) indispensable for a highly efficient LED, InGaAlN was proposed in 1989. This year, InGaN as a material for the blue emission was grown under the sophisticated conditions, and p-GaN was also obtained with Mg doping. The blue LED was fabricated, and became commercially available in 1993. A white LED was developed in 1996, and has been widely used in the solid state lighting. Taking the material characteristics of nitride semiconductors, the first field-effect-transistors of nitride semiconductors was fabricated in 1993. The high electron mobility transistor has been already used in the base stations of cellar phones. The development of high power and high frequency transistors has been increasingly promoted for realizing the sustainable society. Recently, the polarity characteristic in GaN has been attracted for devices with higher performance.

Biography:

William W Arrasmith completed his Engineering in Physics from the Air Force Institute of Technology in Dayton, Ohio in 1995. Currently, he is the Professor of Engineering Systems at the Florida Institute of Technology (FIT) in Melbourne, Florida. Prior to FIT, he served in the United States Air Force over 20 years, working on various engineering, science, and technology programs, and retiring as Lieutenant Colonel in 2003. He has authored the book, “Systems Engineering and Analysis of Electro-Optical and Infrared Systems”, CRC Press (2015), developed six patents, and has over 30 journal/conference papers.

Abstract:

We present a general method for directly estimating 1-D (time-based) or 2-D (spatial domain-based) transfer functions from only irradiance measurements, applicable to linear, time and/or space invariant detection systems. A relevant example of a 2-D linear, space-invariant system is an atmospheric turbulence compensating imaging system. For well designed optical imaging systems, the turbulent atmosphere dominantly and strongly limits the imaging system’s spatial resolution when the entrance pupil aperture is much larger than the atmospheric coherence length r0. In this case, the uncorrected optical imaging system in atmospheric turbulence falls far short of achieving its potential classical diffraction-limited spatial resolution. Atmospheric turbulence compensation (ATC) methods can provide a D/ro improvement in spatial resolution where D is the diameter of the entrance pupil of the imaging systems and ro is the atmospheric coherence length (a.k.a Fried parameter). In this paper, we briefly describe the nature and effects of atmospheric turbulence on passive, incoherent optical imagery (e.g. imaging systems that use natural illumination sources such as sunlight or moonlight), describe the theoretical basis and mathematical underpinnings used to simulate the effects of atmospheric turbulence, describe the model for our direct optical transfer function (OTF) estimation method, and show how our new OTF estimation method applies to representative atmospheric turbulence compensation paradigms. Our OTF estimation method is shown to have increased computational speed, reduced computational and physical complexity, eliminates inherent
computational redundancies, potentially provides higher accuracy in estimating the OTF, and has built-in constraints for faster
solution convergence over contemporary methods.

  • Theoretical Physics | Experimental Physics | Computational Physics | Plasma Physics | Supercondutivity
Location: Fleming´s Room 6

Chair

Ling Jun Wang

University of Tennessee at Chattanooga, USA

Co-Chair

Vasily Yu Belashov

Kazan Federal University, Russia

Session Introduction

Johannes Gruenwald

Gruenwald Laboratories, Austria

Title: Theory and applications of inverted fireballs

Time : 11:45-12:05

Biography:

Johannes Gruenwald obtained his master degree in physics from the University of Graz in 2008 and his PhD in physics from the University of Innsbruck in 2012. He has authored or co-authored more than 35 publications in theoretical, experimental and applied plasma physics and technology. His fields of interest include plasma instabilities, fusion physics, plasma coating technologies and the application of plasmas for space technologies. Johannes Gruenwald was guest researcher in several research facilities and universities across five countries. He is the CEO and founder of Gruenwald Laboratories and the editor-in-chief of the Journal of Technological and Space Plasmas.

Abstract:

Inverted fireballs have been proven to be a viable tool for large area surface modifications and for a direct conversion from a DC input signal to an RF output signal. Their suitability for surface modifications in general and for deposition technologies in particular is owed to their very homogeneous plasma potential and their high charge densities. This talk will outline
theoretical investigations into inverted fireballs, such as analytical models and particle-in-cell simulations and the application of these findings to technologically relevant topics. Recent findings that describe in detail how these plasma phenomena can be utilized will be shown. Furthermore, it will be demonstrated that inverted FBs exhibit a number of plasma instabilities, but they can be stabilized over a long period of time, which is necessary for their utilization in the industry. It will also be outlined in this talk where the borders of fireball research are at the moment and what needs to be done in order to gain a deeper scientific understanding in the future.

Recent Publications:
1. D Levko and J Gruenwald (2017) On the energy deposition into the plasma for an inverted fireball geometry. Physics of Plasmas 24(10):103519.
2. P Knoll et al. (2016) PECVD of carbon by inverted fireballs: from sputtering, bias enhanced nucleation to deposition. Diamond and Related Materials. 65:96–104.
3. J Gruenwald (2014) On the dispersion relation of the transit time instability in inverted fireballs. Physics of Plasmas 21(8):082109.
4. R L Stenzel et al. (2011) Transit time instabilities in an inverted fireball. II. Mode jumping and nonlinearities. Physics of Plasmas 18(1):012105.

Biography:

Hiqmet Kamberaj has completed his PhD in 2005 from Manchester Metropolitan University and Post-doctoral studies from University of Minnesota, Arizona State University and National Institute of Nanotechnology at University of Edmonton. He is an Associate Professor at International Balkan University and the Acting Dean of the Faculty of Engineering. He has published around 20 papers in reputed journals and has been serving as an Editorial Board Member and Ad-Hoc Reviewer of repute.

Abstract:

In this study, we investigate the interactions and analyze associative behaviour at the interface between protein and RNA. In this study, we have combined molecular dynamics simulation and information theoretic measures, such as transfer entropy to investigate the driving forces at the interface of complex biomolecular systems. The modular architecture of binding site may greatly simplify the design of new molecular systems interactions and provides a feasible view of how these interactions evolve. Combining complex information theoretic measures and free-energy calculations, we show that identification of the dominant contributions to the free energy of complex interactions can guide experiments aimed at the design of protein interaction inhibitors and provide a stepping-stone to important applications such as interface redesign.

Biography:

Vladimir G Plekhanov was graduated Tartu State University in 1968, PhD. (Physics and Mathematics, 1972), Doctor of Science (Physics and Mathematics, 1982). Main interest fields: the origin of the mass (quantization of matter) as well as the experimental manifestation of the strong nuclear interaction in the spectroscopy of solids. He is author approximately 200 publications both in English and Russian. Main books:
1. Isotope Effects in Solid State Physics (Academic Press, San Diego, 2001).
2. Isotope - Based Quantum Information (Springer, Heidelberg, 2012).
3. Isotopes in Condensed Matter (Springer, Heidelberg, 2013).
4. Isotope Effect - Macroscopical Manifestation of the Strong Interaction (Lambert Academic Publishing, Deutschland, 2017) (in Russian).

Abstract:

It is well - known that the interaction binding quarks into hadrons is called the strong interaction. It holds protons and neutrons together to form nuclei. For the strong interaction, gluons are the exchange particles that couple to the color charge of quarks. There are a common place in modern physics that the strong force does not act on leptons (electrons, positrons, muons and neutrinos). Our experimental results show the violation of this strong conclusions. Up to present time macroscopic manifestation of the strong nuclear interaction are restricted to radioactivity and the release of nuclear energy. Our report is devoted to the description of the significantly new kind manifestation of the strong force. It will be shown that an activation of the strong interaction by adding of one neutron to the nucleus causes the global reconstruction of the macroscopic characteristics of solids. We have studied the low - temperature optical spectra (luminescence -- Fig. 1 and reflection -- Fig. 2) of the LiHx D1-x , 0 ≤ 1 ≤ 0 crystals which are differ by term of one neutron from each other. In dielectrics crystals an electron from valence band is excited into the conduction band. The attractive Coulomb potential btween the missing electron in valence band, which can be ragarded as a positively hole, and the electron in conduction band forms exciton which energy En=1s (LiD) crystals are large - radius excitons [2]. In experiments we used the samples with clean surface cleaving in the bath of helium cryostat with normal or superfluid liquid helium. Exciton luminescence is observed when studied crystals are excited in the midst of fundamental absorption [3]. The spectrum of free exciton photoluminescence of LiH (LiD) crystals cleaved in superfluid helium consists of narrow phonoless emission line and its broader phonon replicas which arise due to radiative annihilation of excitons with the production of one to five LO phonons ( in Fig. 1 it shows only two LO phonons).

Mikhail A Mochalov

Russian Federal Nuclear Center, Russia

Title: Quasi-isentropic compressibility of deuterium at pressure region of ~12 TPa

Time : 12:45-13:05

Biography:

Mikhail A Mochalov has an ScD Degree in Physics and Mathematics. He is a High-Quality Expert in experimental investigations of thermal physical properties for plasma of cryogenic liquids (such as nitrogen, argon, krypton, and xenon), gaseous helium and deuterium at shock compression and quasi-isentropic compression in the megabar range of pressures. His obtained data are well-known in Russia and other countries. The data are unique and correspond to the world level of investigations in physics of high energy densities.

Abstract:

We report on the experimental results on the quasi-isentropic compressibility of a strongly non-ideal deuterium plasma compressed to the density ρ≈10 g/cc by pressure Р=11400 GPa (114 Mbar) on a setup of spherical geometry. We describe the characteristics of the experimental setup, as well as the methods for the diagnostics and interpretation of the experimental results. The trajectory of metal shells that compress the deuterium plasma was detected using powerful pulsed X-ray sources with maximal electron energy of up to 60 MeV. The value of the plasma density ρ≈10 g/cc was determined from the measured value of the shell radius at the instant that it was stopped. The pressure of the compressed plasma was determined using gas dynamic calculations, taking into account the actual characteristics of the experimental setup. In the laboratory experiment on multiple shock loading of gaseous deuterium was achieved a state very close to that of planet-giants of the solar system, e.g. Jupiter and Saturn.

Valentina Markova Kirilova

Bulgarian Academy of Sciences, Bulgaria

Title: About the new axioms and laws

Time : 14:05-14:25

Biography:

Valentina Markova Kirilova graduated from the Technical University of Sofia in 1981 as a regular training and also from St. Kliment Ohridski University of Sofia, specializing in Mathematics and Informatics as distance learning. She defended her Doctoral Dissertation and received a PhD Degree from the Scientific Institute from the Ministry of Military Defence in 1990. She now works at the Bulgarian Academy of Sciences, Institute of Mathematics and Informatics as an expert in algebraic encoding of information.

Abstract:

The report describes the new version of the new axioms and laws. This current study continues the development of the expanded field theory by expanding of the theory of the electromagnetic field to a more general theory of the field. This more general theory can cover a much wider area of natural phenomena, even including phenomena such as gravity, free energy and so on. It is known that Maxwell’s laws (1864) are based on a single axiom which says that the even movement (velocity is constant) of an electrical vector E leads to movement in a closed loop (div rot E=0). The author replaces this axiom with a new one, according to which the uneven movement of a vector E leads to an open loop (div rot E≠0) or an open uneven vortex (div Vor E≠0). In this report, two axioms and nine laws lead to some of the following results: movement in a closed loop is replaced with movement in an open loop (vortex). Even movement is replaced with uneven movement in cross or longitudinal, decelerating or accelerating vortices. The decelerating cross vortex generates an accelerating longitudinal vortex in the center of the body of the object through a special transformation (Δ), so movement in 2D leads to movement in 3D. The decelerating vortex emits out cross vortices, while accelerating vortex sucks in cross vortices. The accelerated longitudinal vortices with different accelerations are attracted to each other so that they are inserted into each other and form a gravitational funnel that attracts the environment to itself. The distortion of the surrounding space is just one of the results of the magnitude of the acceleration and of the new quality of the complex design of the longitudinal vortices. Another result is that the timespace within the gravity funnel is opposite to the time–space we live in.

Recent Publications:
1. Markova V (2016) Three space times obtained by combined vortex movements. Intern. Jour. of Current Research 8(9):37826–37832.
2. Markova V (2015) New axioms and structures. Fund. Jour. of Modern Physics 8(1):15–24.
3. Markova V (2015) Gravity structures: essence and properties. Fund. Jour. of Modern Physics 8(2):85–104.

Benedek J Nagy

Wigner Research Centre for Physics, Hungary

Title: Ultrafast photoemission from plasmonic nanotriangles and applications

Time : 14:25-14:45

Biography:

Benedek J Nagy has completed his MSc in Physics at the Budapest University of Technology and Economics in 2014. He started his PhD at the University of Pécs and he is currently an Assistant Research Fellow at the Wigner Research Centre for Physics in the MTA “Lendület” Ultrafast Nano-Optics Group. He spent eight month at the University of Oldenburg in the Ultrafast Nano-Optics Group as a Guest Researcher. He has published more than five papers in reputed journals and was Author and Co- Author to several conference papers.

Abstract:

Ultrafast photoemission proved to be a versatile tool for probing the field enhancement of nanoplasmonic near-fields in the vicinity of nanostructured metal surfaces. Since this new method can be further developed to enable pump-probe studies of nanoplasmonic fields, it is particularly interesting to investigate ultrafast plasmonic photoemission with few-cycle laser pulses, on the characteristic timescale of typical collective plasmon phenomena. To this end, we induced photoemission from different plasmonic nanoparticles with a state-of-the-art Ti: sapphire oscillator, delivering 5.5 fs pulses in a carrierenvelope phase-stabilized manner. The yield, the kinetic energy spectra and angular distribution of photoelectrons were analyzed with the help of a hemispheric electron spectrometer. Ongoing experiments seek to answer whether photoelectron movement on nanometer scale can be governed by the waveform (i.e. the carrier-envelope phase) of few-cycle laser pulses. To this end, asymmetric nanostructures (with respect to the polarization direction of the laser) look the most promising so that the symmetry of the photoemission from the hot spots of the nanoparticles is broken. First, we investigated the kinetic energy spectra of the photoelectrons from nanotriangles with 1-kHz, 40-fs 800-nm pulses delivered by a regenerative amplifier. In this case, a time of flight (TOF) spectrometer can be used for this purpose and after this kind of validation of the field enhancement on the new sample, we can perform the experiments aiming to steer the photoelectrons with the carrier-envelope phase (CEP) of few-cycle laser pulses using an 80-MHz, 5.5-fs 730-nm CEP stabilized laser.

Biography:

Naoum Karchev has completed his PhD from Steklov Mathematical Institute Moscow and Post-doctoral studies from Sofia University, Department of Physics. He has
published 47 papers in Physical Review Letters, Physical Review B: Condensed Matter and Materials Physics, Physical Review D, Journal of Physics: Condensed Matter,
etc.

Abstract:

I report the first study for the impact of the applied electric field on the Cooper pairs prior the superconductivity. The
generalized Maxwell equations are obtained from time-dependent Ginzburg-Landau theory using the first-order formalism
in gauge theory. This formalism is very useful but not popular among solid-state physicists. This is why I gave more details in
the derivation. The results give new insight for the electrodynamics of s-wave superconductors. It is shown that if there are
Cooper pairs above the superconductor critical temperature, the electric field forces the Cooper pairs to Bose condensate and
the onset of the superconductivity, thereby increasing the critical temperature.

Biography:

Ümmügül Erözbek Güngör has been working as a Research Assistant in the Physics Department at Middle East Technical University (METU) since 2012. She has a BS and an MS Degree in Physics and is a Physics Teacher at the METU. She also holds a PhD in Physics. She has recently been working on plasma Spectroscopy, Plasma Diagnostics and Plasma Modeling.

Abstract:

Nowadays, the popularity of the plasma thrusters, which has a simple and compact design, is increasing in-space applications. The inductively coupled radio frequency (RF) ion thrusters (ICP-RITs) are mostly preferred due to supplying high specific impulse and high efficiency. The ICP-RITs are composed of five main parts; discharge vessel, RF coils (RFC), RF generator with its matching network system (RFG), ion optics system (IOS-screen grid, accelerator grid and decelerator grid) and a neutralizer. To understand the physical working principles of these devices, it is necessary to solve the electromagnetic (EM) field equations, which are based on the Maxwell`s equations. Therefore, in this study, we used the COMSOL Multiphysics® software program for the numerical analysis of the ICP-RITs. Firstly, we investigated the locational (along the axial direction of the discharge vessel-at the center and on the upper part that is close to the ion extraction unit) effects of the RF coils on the generated plasma parameters (ne and Te) at 30 mTorr-300 Watt as shown in Figure 2. The coils shown in Figure 1 provide 10 times more ni and 2.6 times more at the screen grid. These parametrical analyses can be clearly observed in the Figure 2-b. For this reason, the following studies were based on this configuration. Then, we tried to understand the effects of the aspect ratio (AR=L-length/D-diameter=2, 3, 4, 5 and 6) and the gas pressure (30-230 mTorr) on the plasma parameters, ion density and electron temperature for the fixed RF power (300 Watt). In Figure 3-a, the density belongs to the ions that are extracted from the screen grid. The location of the screen grid can be seen from the Figure-1. As clearly seen from the Figure 3-a, the ion density increases logarithmically with the gas pressure and the aspect ratio. The reason of this increase due to the pressure is the ideal gas law. From the Figure 3-b, all the electron temperature variations are overlap. However, a closer view to the graph shows that the variations are slightly different from each other with respect to the aspect ratio value. Also, a temperature exponential decrement with the gas pressure is clearly observed from the figüre. Because the number of the Ar gas particle increases with increasing gas pressure. However, at constant RF power, the average electron thermal energy decreases that means the thermal kinetic energy per charge also decreases. In conclusion, the main goal of this work is attracting more ions from the RF ion thruster. To achieve this goal, we will design our thruster according to the dimensions recorded at AR=6 and also we will set the gas pressure at 230 mTorr.

Recent Publications:
1. Dobkevicius M and Feili D (2017) Multiphysics model for radio-frequency gridded ion thruster performance. Journal of Propulsion and Power 33:939–953.
2. Turkoz E and Celik M (2014) 2D Electromagnetic and fluid models for inductively coupled plasma for RF ion thruster performance evaluation. IEEE Transactions on Plasma Science 42:235–40.
3. Chabert P, Monreal J A, Bredin J, Popelier L and Aanesland A (2012) Global model of a gridded-ion thruster powered by a radiofrequency inductive coil. Physics of Plasmas 19:1–8.
4. Browning J, Lee C, Plumlee D, Shawver S, Loo S, et al. (2011) A miniature inductively coupled plasma source for ion thrusters. IEEE Transaction on Plasma Science 39:3187–3195.
5. Goebel D (2008) Analytical discharge model for RF ion thrusters. IEEE Transactions on Plasma Science 36:2111–2121.

Biography:

Mohamed El-Zohry has completed his PhD from Yerevan State University and and is now a Lecturer of Physics at the Physics Department of Sohag University. He has published more than 15 papers in different international reputed journals.

Abstract:

The Brueckner-Hartree-Fock (BHF) approximation for the two-body forces fails to reproduce "correctly" the empirical saturation point of the symmetric nuclear matter (ρo = 0.625 fm-3) for the Argonne V18 potential and (ρo = 0.33 fmt) for the BoonB potential. In the present work one may introduce a Skyrme effective introduction density dependent term in addition to the BHF calculations to obtain the correction parameters for Three-Body Force (TBF). The three-body effects are studied for both asymmetric nuclear matter and pure neutron matter to calculate the nuclear Equation Of State (EOS). The TBF contribution to the EOS of the nuclear matter is repulsive within the BHF framework. The introduction of the TBF shifts and improves the saturation properties of the nuclear matter (ρo = 0.2 fm-3, Eo/A = -15.27 MeV) for the Argonne potential and (ρo = 0.17 fm-3, Eo/A = -17 MeV) for the BonnB potential towards to the empirical saturation point. The incompressibilit at the saturation densities for the two different potentials is studied and it's found 246.97 MeV for the Argonne potential and 216.7 MeV for the BonnB potential comparing with the experimental value for the symmetric nuclear matter have been determined to be 240 ±20 MeV. The pressure as a function of the density in fm-3 for the symmetric nuclear matter is calculated, negative values for the pressure at densities below the saturation density are obtained, the pressure starts to increase as the increasing of the density up to zero value at the saturation density.

Shaidullin R I

Moscow Institute of Physics and Technology, Russia

Title: Thermal limits of fiber lasers power scaling

Time : 16:05-16:25

Biography:

Shaidullin R I has completed his PhD from the Institute of Radio Engineering and Electronics of RAS. He is the Senior Researcher at the Institute of Radio Engineering and Electronics of RAS and a Lecturer in Moscow Institute of Physics and Technology. He has published more than five papers in reputed journals and more than 15 abstracts  at international conferences.

Abstract:

The output radiation power of modern continuous wave single-mode fiber lasers exceeds 10 kW level with radiation intensity in the fiber core more than 108 W/cm2. Some part of optical pump power, inevitably converts into heat due to the fundamental difference between the pump and generation photon energies, leading to a considerable heating of the active fiber core. A high temperature of the fiber detrimentally affects the laser characteristics and leads to thermal degradation of the fiber, especially its protective polymer layer. Fiber laser filamentous structure results in significant nonuniformity of transverse and longitudinal temperature distribution and high temperature gradients inside the fiber. Therefore, traditional thermal measurement methods don’t allow determining distribution of absolute temperature values inside fiber laser. In this study, experimental techniques based on radio-frequency impedance spectroscopy was applied for measurement of active fiber heating. Since dielectric constant of polymer coating of conventional active fibers depends on temperature, then electric impedance of optical fiber is also a function of its temperature. This technique allowed direct measuring of the polymer coating heating, which thermal degradation is one the most limiting factor of fiber laser power scaling. Thermal regime inside entire commercial fiber laser unit was also investigated. Mathematical modeling of thermal processes in fiber laser based on heat conduction equation solution allowed determination of contribution of different mechanisms to the fiber laser heating and temperature distribution inside the fiber laser. All boundary conditions for this modeling were obtained experimentally.

Biography:

Albiomy Abd El-Daiem has his expertise in Nuclear and Particle Physics, especially in Nuclear Emulsion Interactions. His specialization connects between theoretical models and experimental data which allow us to understand the internal structure of the nucleons as well as other particles.

Abstract:

This work studies the correlations between multiplicities of slow particles produced in the interactions of 24Mg with emulsion at 4.5 A GeV/c to extract the information about the mechanism of particle production. The results have been compared with the experimental results obtained by other workers. Also several types of correlations between them have been investigated. The variation of the produced particles with projectile mass number and target size has been studied. Finally, there is no distinct correlation between the shower particle production and the target excitation, but the average value of grey particles decreases with the increase of the number of black particles and vice versa for 28Si with emulsion at 4.5 GeV/c.

Recent Publications:
1. A Abd El Daiem (2015) Interaction of 28Si ions with emulsion nuclei at momentum 4.5 A GeV/c Journal of Nuclear and Particle Physics 5(1):10–14.
2. A Abd El Daiem and A A M Habib (2015) Characteristics of inelastic interactions light nuclei at 4.5 A GeV/c with the nuclei (CNO) and (Ag Br). International Journal of Pure and Applied Physics 11(1):1–8.
3. A Abd El Daiem (2015) Study some features of the total disintegration events of heavy emulsion targets from 28Si at 4.5 A GeV/c. Journal of Nuclear and Particle Physics 5(1):1–9.
4. A Abd El Daiem (2014) Description of high Ns-Multiplicity events produced in relativistic heavy ion collisions At 4.5 A GeV/c. International Journal of Pure and Applied Physics 10(1):63–73.
5. A Abd El-Daiem (2017) The radiological impacts of TE-NORM activity in upper Egypt. International Journal of Research and Reviews in Applied Sciences, IJRRAS 33(1). q

Aleksei Koniashkin

Moscow Institute of Physics and Technology, Russia

Title: Concept of equivalent temperature of laser crystals and glasses

Time : 16:45-17:05

Biography:

Aleksei Konyashkin completed his PhD from Kotelnikov Institute of Radio Engineering and Electronics of RAS. He is the Senior Scientist at the Kotelnikov Institute of Radio Engineering and Electronics of RAS. He has published more than 15 papers in reputed journals.

Abstract:

One of the main factors that characterizes crystal quality, is overheating induced by interaction with laser radiation. Nonuniformity of crystal temperature distribution is a condition by the intensity distribution of propagating laser radiation. In this case, a conventional approach using thermodynamic temperature for the characterization of crystal heating is incorrect. Recently, we have introduced novel notion of equivalent temperature of nonlinear-optical crystals interacting with laser radiation. All nonlinear-optical crystals possess piezoelectric properties. Value of the crystal equivalent temperature is determined directly by measuring a frequency shift of the crystal eigenmodes, which are noncontactly excited by application of the probe radiofrequency electric field. This approach was successfully applied for the investigation of massive lithium triborate (LBO) crystal boules. It is necessary to take into account the presence of the considerable temperature gradient inside the large-size crystals when investigating its interaction with laser radiation. Here, for the determination of the optical absorption coefficient, it is not sufficient to know the equivalent temperature measured using certain resonance of the sample, because an additional information such as the surface temperature is necessary. For this purpose, it is proposed to use the tiny microresonators made of piezoelectric crystals, which resonance frequencies are strongly temperature sensitive. Microresonators should exhibit both high heat conductivity and low optical absorption at involved radiation wavelengths.
When the microresonator is placed onto the crystal boule, its temperature can be identified with the temperature of the corresponding area of the boule surface. During the laser irradiation, the kinetics of both the equivalent volume temperature of the boule and the temperature distribution at its surface were measured. Then the absorption coefficient of the boule was calculated by solving the nonstationary heat conduction equation taking into account the heat transfer change with both environment temperature and the surface temperature of the crystal.

  • Experimental Phyiscs | Astrophysics | Particle Physics | Lasers and Optics | Biophotonics
Location: Fleming´s Room 6

Chair

Qiuhe Peng

Nanjing University, China

Co-Chair

Takashi Matsuoka

Tohoku University, Japan

Session Introduction

Vasily Yu Belashov

Kazan Federal University, Russia

Title: Modified CD method and simulation of vortical structures in plasma and fluids
Biography:

Vasily Yu Belashov, has a PhD in Radiophysics and a DSci in Physics and Mathematics. His main fields of research interest are theory and numerical simulation of the dynamics of multidimensional nonlinear waves, solitons and vortex structures in plasmas and other dispersive media. Presently, he is a Chief Scientist and Professor at the Kazan Federal University. He is the author of 310 publications including seven monographs.

Abstract:

The modification of known methods of contour dynamics (CD) used for simulation of evolution and the interaction dynamics of the vortex structures such as FAVR’s or V-states, and also the examples of the results of modeling of these processes in fluids are presented. Our modification of the CD method enables us to minimize the errors caused by breaks of contours and the errors of the finite differences method used for calculation of time evolution of FAVR’s in the CD algorithm. Modification of standard CD algorithm enables also, on a level with modeling of the unit vortices, to study evolution and dynamics of interaction of N-vortical systems of the various spatial configurations consisting from FAVR’s depending on their degree of symmetry, value and a sign of a vorticity. The results of our numerical simulation enable to conclude that the modified CD method is very effective in studying of the vortex phenomena in media where the interacting local vortical regions take place. The results obtained in our simulations, on a level with their obvious importance for adequate interpretation of the effects associated with turbulent processes in fluids and gases can be useful also in the description of turbulent processes in a plasma.

Biography:

Abstract:

The solutions of the wave equation provide adequate information about the beam phase and amplitude at any point. In physical optics, the exact solution of the wave equations (e.g. Helmholtz equation), is generally impractical, thus approximations are used; the paraxial approximation applies when the beam waist is large relative to the wavelength and the angle of divergence is small. The multipole expansion method provides solutions to the wave equation. Any solution of Maxwell’s equation can be expressed as the summation of incoming and outgoing electric and magnetic multipole fields. The superposition of any two solutions is also a solution, and this is referred to as the principle of superposition. The electromagnetic field at a point far from a focus is described by expansion of the diffraction integral into a series of functions such as Gegenbauer polynomials or spherical Bessel functions. This method has been used to investigate the effects of different amplitude weighting, and can be extended to truncated Gaussian beams or systems with spherical aberration. Defining an arbitrary field as the modal superposition of individual fields, and employing the angular spectrum method (Fourier optics) in the framework of wave optics, can provide accurate results for the propagation of each component. The field characteristics can be described by a superposition of the propagated components. Using the current solutions of the paraxial wave equation enables to describe the propagation of an arbitrary laser beam from near- to far-field. Based on the modal analysis method, we analyse the output beam of a diode pumped solid state (DPSS) laser emitting a multimode beam. Using the experimental data, the individual modes, their respective contributions, and their optical parameters are determined. We have designed a mode modulator unit that includes different meso-aspheric elements and a soft-aperture to reshape the multimode beam into a quasi-Gaussian beam through the interference and superposition of the various modes. The converted beam is guided into a second optical unit comprising achromatic-aspheric elements to produce a thin light sheet for ultramicroscopy. This sheet is significantly thinner and exhibits less side shoulders compared with a light sheet directly generated from the output of a DPSS multimode laser. The method to generate a reconstructed Gaussian beam from multimode lasers that is described in this paper may help to decrease the price of ultramicroscopy systems, making them more affordable for scientists needing lasers with different wavelengths.

Ganka Stoeva Kamisheva

Bulgarian Academy of Sciences, Bulgaria

Title: Consequences of the Maneff’s theory
Biography:

Ganka Stoeva Kamisheva has completed his PhD from Georgi Nadjakov Institute of Solid State Physics. She is the curator of the History of Physics Museum at the Institute of Solid State Physics. She has published more than 82 papers in journals and four books.

Abstract:

A new “reaction” theory produced in Bulgaria during the first half of 20th century will be discussed historically. Sofia University Professor Georgi Ivanov Manev (15.01.1884–15.07.1965) created it in 1924 [1-6]. This scientific result originates from Maneff specialization in the University of Toulousa, France (1913–1914) where Georgi Maneff studied vector calculus under Professor H. Bouasse leadership [7-9]. Maneff’s reaction theory is the most remarkable theoretical result in Bulgaria during the first half of 20th century. His new idea has a great importance for understanding the Universe. Georgi Maneff published 47 articles for a period of 20 years (1920–1940) in condition of fierce competition (at the rate of 2.3 articles for a year). There are
32 scientific papers, 3 university textbooks, 10 popular articles, and 2 reviews created by him. Half of his scientific papers are written in Bulgarian language and printed by the Yearbook of the Sofia University. The rest of his scientific papers are published in Comptes Rendus, Paris (7), Zeitschrift für Physik (3), Terrestrial Magnetism und Atmospheric Electricites (2), Zeitschrift für Astrophysik (2) и Astronomische Nachrichten (1). Scientific papers of Georgi Maneff are unifying thematically. Focusing on the physics point of view in his theoretical investigations, he created a new theory. His theory extends static Newtonian mechanics. Georgi Maneff associated forward motion with rotation by adding movement of the center of rotation (rolling). He calls the theory proposed by him “extended principle of reaction”. He writes that it is a classic analogue of the theory of relativity. Maneff characterizes it as a “substantial dynamic theory of matter and energy”. Comparing it with Einstein theory, Maneff defines the theory of relativity as a structural kinetic theory that is the better mathematical method. Reaction theory, however, surpasses it because it is closer to physical reality. The Einstein’s decision is a special case of Maneff’s substantial decision. Scientific publications of Maneff and some documents from the Bulgarian state archive have used. Some consequences of
Maneff’s theory will be discussed there.

Biography:

Valentyn A Nastasenko is the professor at Kherson State Maritime Academy, Ukraine.

Abstract:

Presently gravitation constant G is certain to 6 signs from which 5 – exact, that on 4-3 orders yields exactnesses of other fundamental physical constants are speed c light in a vacuum and constants of Plank’s h, recommended by CODATA (2014). However possibilities of increase of exactness of determination of G experimental a way in the conditions of Earth attained the technical limit, that requires the search of on principle new approaches. On the basis of the offered original method the system of calculation dependences, effluent from fundamental physical constants with, is c, G, h. This physicalmathematical regularities is strict and allow determining the exact value of frequency of oscillation wave gravitational field νG= 7.4∙1042 s-1 (constant Nastasenko). This value νG of allows defining value gravity constant G to 10 signs, that on 4 orders more precisely than the all of values of G known presently. The necessity of experimental determination of G is thus eliminated, only enough determinations c and h, and growth of their exactness automatically will result in growth of exactness of determination of size of G. On the basis of νG, the wave parameters of the gravitational field are found, which are real quantities of the material world, and can replaced abstract Planck’s values of length lp, time tp and mass mp. Herewith, their accuracy is increased which allows to determine the value of the gravitational constant G to 10 characters, which is 4 orders of magnitude more accurate
than all its values recommended by CODATA (2014).

Biography:

Petteri Pusa received his PhD from the University of Helsinki, Accelerator Laboratory (2004) in the field of applications of theoretical nuclear physics methods in ion beam analysis targeting in materials science research. He further developed his expertise to study various semiconductor materials, especially for high luminosity experiments in high energy physics. In 2006, he joined University of Liverpool, part of CERN’s ALPHA collaboration as a Team Leader for developing and commissioning of dedicated annihilation detectors for the purpose of this experiment.

Abstract:

One of the mysteries in modern physics is that antimatter seems to have been disappeared from the universe. According to the standard model of physics, there should have been equal amount of matter and antimatter produced in the Big Bang. However, we don’t see any trace of antimatter; at least in the observable universe. One possible explanation is that CPT–symmetry, the corner stone of the standard model is somehow violated. The ALPHA–experiment, situated at CERN’s Antiproton Decelerator, has now developed a direct way to precisely address this question. This is done by comparing the properties of hydrogen atom to its anti-world counterpart, antihydrogen. The most recent findings by the collaboration indicate that antihydrogen behaves similarly to hydrogen, in precision of few parts per quadtrillion. However, properties of hydrogen have been measured three orders of magnitude beyond this. ALPHA is currently aiming to improve precision of the measurements of antihydrogen to see if there are any statistically observably differences in the properties in these two atoms. In this talk, a review of recent progress, along with methods to create neutral antimatter, how to trap it, how to diagnose and detect it, will be discussed. A review of the progress in the field of low energy antimatters physics will also be discussed.

Ayesha Mohyuddin

University of Management and Technology, Pakistan

Title: Theoretically IR and Raman spectra of propane using GAMESS
Biography:

Ayesha Mohyuddin is an Associate Professor at UMT Lahore, Pakistan and did her PhD from GCU Lahore. She has published 12 papers and research work in journals with impact factor and has presented at 15 international conferences. She won the SATHA Innovation Award 2016, Best Research Project Award 2015 UMT, IUPAC Fellowship 2015 and has attended Alumni Nobel Laureates Meeting 2006, Germany. She has supervised 26 MS theses in areas of Analytical Chemistry, Computational Studies, Environmental Chemistry and Natural Product Chemistry

 

Abstract:

Propane (C3H8) is the third individual from the alkane homologous arrangement, a three-carbon, non-cyclic, immersed, vaporous hydrocarbon at encompassing conditions, and a typical constituent of petroleum gas (additionally gas hydrates, shale and coalbed gas) with a normal substance running from 0.1 to 7%. The investigation of initial couple of alkanes in the homologous line (methane, propane and butane) demonstrated some normal highlights in the appropriation of groups. GAMESS, B3LYP form of Density Functional Theory (DFT) was used in blend with an assortment of premise sets. Geometry optimization of propane was calculated using the same basis set 6-311G(d,p). The estimations of sub-atomic orbital energies particularly, the HOMO and LUMO energies were performed to decide the vitality hole amongst HOMO and LUMO orbitals. Right off the bat, sub-atomic orbitals MOs of C3H8 particle were computed utilizing MOLPRO programming. As per this estimation, it has been discovered that propane atom has 23 sub-atomic orbitals and the vitality hole amongst HOMO and LUMO orbitals was found to be around 135 nm. Raman spectrum of propane displayed bands at 1800 cm-1 and 3250 cm-1. The region 3100-3500 cm-1 in propane spectrum was the Raman area. In the low recurrence area Ê‹<1500 cm-1) the position of groups to some degree is subjective, however the high recurrence groups are unbendingly situated in the locale of around 3000cm-1, changing just in their forces. A significat band at 3463cm-1 was attributed to symmetric extending methods of CH2 (Ê‹3), and CH3 (Ê‹16). Moreover, Fermi Resonance between the hints of vibrations situated around 1500 cm-1 and high recurrence groups can be observed, offering ascend to redistribution of the last thickness of those states. In addition, the connection between the high recurrence CH extending vibrations and the particle's own particular low recurrence vibrations are genuinely powerless which is in opposition to the circumstance in straightforward alcohols (e.g. butanol), where such collaboration is solid bringing about wide, confused groups in the CH-extending district.

 

Biography:

Rajkumar Thapa has completed B.Sc. at the age of 23 from Butwal Multiple Campus, Nepal. He is a science teacher of Holy Angel’s English Boarding School. He has been teaching science since 5 years and very interested in research projects. Besides teaching he is doing research about the alternatives of curing diseases without medicines.

Abstract:

Newton’s third law of motion states that when we apply action force on the body, it gives equal magnitude of reaction force. Thus, it is said that “In every action there is equal and opposite reaction. But this is a one sided law. It is not applicable in all the cases when the force is exerted between two bodies. There are more incidents in this universe which fails Newton’s third law of motion. Friction, nature of body, impulse etc. are the reasons for unequal action and reaction. Mathematically, according to the conservation of linear momentum, m1u1+m2u2=m1v1+m2v2. The sum of linear momentum before collision and sum of linear momentum after collision is zero or equal to become the equal action and reaction. But if the sum of linear momentum before collision and sum of linear momentum after collision is not zero or if the values are not equal to each other, in this case we can say that action and reaction force are not equal. My new law states that “When any two matters come in contact, the action and reaction of the matter depend on its structure and condition.” It implies that the action and reaction can be equal or unequal also. There are many mathematical and practical experiments which prove that there are many defects. So, this law should be changed and should be wide the concept in a new law. Otherwise it is sure that it will bring more confusion
among teacher and students in the world.